Quantum field theory of fluids.

نویسندگان

  • Ben Gripaios
  • Dave Sutherland
چکیده

The quantum theory of fields is largely based on studying perturbations around noninteracting, or free, field theories, which correspond to a collection of quantum-mechanical harmonic oscillators. The quantum theory of an ordinary fluid is "freer", in the sense that the noninteracting theory also contains an infinite collection of quantum-mechanical free particles, corresponding to vortex modes. By computing a variety of correlation functions at tree and loop level, we give evidence that a quantum perfect fluid can be consistently formulated as a low-energy, effective field theory. We speculate that the quantum behavior is radically different from both classical fluids and quantum fields.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exploring the implications of the laws and principles of quantum physics in the field of talent (quantum theory of talent)

The issue of talent-discovering is one of the most important issues in the field of education and research that has always been a concern for educational systems. Studying the issues of identifying and guiding talented students can illuminate a large part of the activities of the executors and practitioners in order to accomplish their mission effectively. On the other hand, quantum physics has...

متن کامل

Classification of Quantum Hall Universality Classes by W 1 + ∞ symmetry

We show how two-dimensional incompressible quantum fluids and their excitations can be viewed as W1+∞ edge conformal field theories, thereby providing an algebraic characterization of incompressibility. The Kac-Radul representation theory of the W1+∞ algebra leads then to a purely algebraic complete classification of hierarchical quantum Hall states, which encompasses all measured fractions. Sp...

متن کامل

Stable Hierarchical Quantum Hall Fluids as W1+∞ Minimal Models

In this paper, we pursue our analysis of the W1+∞ symmetry of the lowenergy edge excitations of incompressible quantum Hall fluids. These excitations are described by (1 + 1)-dimensional effective field theories, which are built by representations of the W1+∞ algebra. Generic W1+∞ theories predict many more fluids than the few, stable ones found in experiments. Here we identify a particular cla...

متن کامل

Lattice-Plasmon Quantum Features

in this work, some of the lattice plasmon quantum features are examined. Initially, the interaction of the far-field photonic mode and the nanoparticle plasmon mode is investigated. We probe the optical properties of the array plasmon that are dramatically affected by the array geometry. It is notable to mention that the original goal of this work is to examine the quantum feature of the array ...

متن کامل

Hamiltonian analysis of interacting fluids

Ideal fluid dynamics is studied as a relativistic field theory with particular stress on its hamiltonian structure. The Schwinger condition, whose integrated version yields the stress tensor conservation, is explicitly verified both in equal-time and light-cone coordinate systems. We also consider the hamiltonian formulation of fluids interacting with an external gauge field. The complementary ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review letters

دوره 114 7  شماره 

صفحات  -

تاریخ انتشار 2015